总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以促使我们思考,因此我们要做好归纳,写好总结。总结你想好怎么写了吗?以下是小编精心整理的六年级上册数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。六年级上册数学知识点大全 篇11、分数乘法:分数的分...

活动范文 > 小学作文 > 导航 > 六年级上册数学知识点大全(经典八篇)

六年级上册数学知识点大全(经典八篇)

2025-05-09

总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以促使我们思考,因此我们要做好归纳,写好总结。总结你想好怎么写了吗?以下是小编精心整理的六年级上册数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

六年级上册数学知识点大全 篇1

1、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

3、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4、分数乘整数:数形结合、转化化归

5、倒数:乘积是1的两个数叫做互为倒数。

6、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

8、小数的倒数:

普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1

9、用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的.倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

10、分数除法:分数除法是分数乘法的逆运算。

11、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13、分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个。

15、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。

比表示两个数相除;只有两个项:比的前项和后项。

比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

六年级上册数学知识点大全 篇2

(一)数与计算

(1)分数的乘法和除法。分数乘法的意义。分数乘法。乘法的运算定律推广到分数。倒数。分数除法的意义。分数除法。

(2)分数四则混合运算。分数四则混合运算。

(3)百分数。百分数的意义和写法。百分数和分数、小数的互化。

(二)比和比例比的意义和性质。比例的意义和基本性质。解比例。成正比例的量和成反比例的量。

(三)几何初步知识圆的认识。圆周率。画圆。圆的周长和面积。*扇形的认识。轴对称图形的初步认识。圆柱的认识。圆柱的表面积和体积。圆锥的认识。圆锥的体积。球和球的半径、直径的初步认识。

(四)统计初步知识统计表。条形统计图,折线统计图,*扇形统计图。Www.qgF7.COm

(五)应用题分数四则应用题(包括工程问题)。百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。比例尺。按比例分配。

(六)实践活动联系学生所接触到的社会情况组织活动。例如就家中的卧室,画一个平面图。

(七)整理和复习六年级数学学习方法:进入小学高年级后,科目稍微增加、内容拓宽、知识深化……学生认知结构发生根本变化,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。总结比较,理清思绪知识点的总结比较。每学完一章都应将本章内容做一个框架图或在脑中过一遍,整理出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。题目的总结比较。同学们可以建立自己的题库。在学习《位置》在用数对确定点的位置,这部分渗透了数形结合的思想,和一一对应的思想。学生可在方格纸上画画。

学习分数乘法的意义:

1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。

2、分数乘分数是求一个数的.几分之几是多少。

例:一小时刷一面墙的1/4,1/5小时刷一面墙的多少?实际上是求1/5的1/4是多少?这种题型可以利用数形结合的数学思想,画一画,折一折。再就是利用:工作效率*工作时间=工作总量在学习分数除法这一节时,例如:分数、除法和小数之间的关系和区别,以及分数除法应用题无论是折纸实验,还是画线段图,都是用图形语言揭示分数除法计算过程的几何意义。分数乘除法,比的知识,运用了类比的数学。(相似和变式)在学习圆这一节时,用逐渐逼近的转化思想。把一个园等分(偶数份)成的份数越多,拼成的图像越接近长方形。体现化圆为方,化曲为直的思想,应用转化思想。在应用中,我们还知道面积相同时,长方形的周长最长,正方形居中,圆周长最短。周长一定时,圆面积最大,正方形居中,长方形面积最小。这题蕴含着一个数学规律,即在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积最大,而长方形的面积则最小。在学习数学广角这一章节中,例如,研究古代鸡兔同笼的问题,就应用了假设法来教学。这种思维方式就是划归法。

六年级上册数学知识点大全 篇3

(一)意义:用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。

(二)分类

1、条形统计图

用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按照一定的顺序排列起来。

优点:很容易看出各种数量的多少。

注意:画条形统计图时,直条的宽窄必须相同。

取一个单位长度表示数量的多少要根据具体情况而确定;

复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。

制作条形统计图的一般步骤:

(1)根据图纸的大小,画出两条互相垂直的射线。

(2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。

(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。

(4)按照数据的大小画出长短不同的直条,并注明数量。

2、折线统计图

用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。

优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。

注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。

制作折线统计图的一般步骤:

(1)根据图纸的大小,画出两条互相垂直的射线。

(2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。

(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。

(4)按照数据的`大小描出各点,再用线段顺次连接起来,并注明数量。

3、扇形统计图

用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。

优点:很清楚地表示出各部分同总数之间的关系。

制扇形统计图的一般步骤:

(1)先算出各部分数量占总量的百分之几。

(2)再算出表示各部分数量的扇形的圆心角度数。

(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。

(4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。

六年级上册数学知识点大全 篇4

1. 位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。

一般先看横的数字,再看竖的数字,注意中间是逗号

2.分数乘法的意义:一个数×分数

分数×一个数

3.乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

4.除以一个不等于0的数,等于乘这个数的倒数

5.两个数相除又叫做两个数的比。比值通常用分数表示,也可以用分数或整数

6.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

7.圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14

8.有关圆的公式:

C= 兀d = 2兀r S =兀r 2

d=C÷兀 d=2 r r = d÷2 r = C÷兀÷2

圆环的面积S = 兀 R 2-兀 r 2

9.原价×折扣=现价 营业额×税率=应纳税额 本金×利率×时间=利息

10.条形统计图:可以清楚的看出数据的多少

折线统计图:可以清楚的看出数据的增减变化趋势

扇形统计图:可以清楚的看出各部分同总数之间的关系

六年级数学下册知识点

一、比例

1、比例的基本性质是在比例里两内项积等于两外项积。

2、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

Y : x = k(一定)

3、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:

Xy=k(一定)

二、数与代数(复习)

1、自然数和0都是整数。

2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。

3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

6:倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

7、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

8、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

9、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

10、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

11、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

12、1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

13、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

14、几个数公有的因数,叫做这几个数的公因数。其中的一个,叫做这几个数的公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的公因数。

15、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

16、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。

17、如果两个数是互质数,它们的公因数就是1。

18、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

19、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

20、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的'。

(二)小数

1、小数的意义 :把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

2、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。

3、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

(三)分数

1、分数的意义 :把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

3、分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

5、分子分母是互质数的分数叫做最简分数。

6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四) 约分和通分

1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三 性质和规律

1、商不变的规律 :商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

2、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

3、小数点位置的移动引起小数大小的变化

(1)小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……

(2)小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……

(3)小数点向左移或者向右移位数不够时,要用“0"补足位。

(五)分数的基本性质

分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

(六)分数与除法的关系

1. 被除数÷除数= 被除数/除数

2. 因为零不能作除数,所以分数的分母不能为零。

3. 被除数 相当于分子,除数相当于分母。

四 运算的意义

(一)整数四则运算

加数+加数=和

一个加数=和-另一个加数

被减数-减数=差

被减数=减数+差

减数=被减数-差

一个因数× 一个因数 =积

一个因数=积÷另一个因数

被除数÷除数=商

除数=被除数÷商

被除数=商×除数

(二)运算定律

1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

3. 乘法交换律:

两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

5. 乘法分配律:

两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。

6. 减法的性质:

从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。

(三)运算法则

1. 整数加法计算法则:

相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

2. 整数减法计算法则:

相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

3. 整数乘法计算法则:

先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

4. 整数除法计算法则:

先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。

5. 小数乘法法则:

先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

6. 除数是整数的小数除法计算法则:

先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

7. 除数是小数的除法计算法则:

先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

8. 同分母分数加减法计算方法:

同分母分数相加减,只把分子相加减,分母不变。

9. 异分母分数加减法计算方法:

先通分,然后按照同分母分数加减法的的法则进行计算。

10. 带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

(一)小数乘除法的意义及法则

1. 小数乘法意义:

小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。例:3.5×4表示4个3.5相加是多少。或表示3.5的4倍是多少。

一个数乘小数的意义与整数乘法的意义不同,是求这个数的十分之几,百分之几,千分之几……。例:25×0.17,表示25的百分之十七是多少。

2. 小数除法的意义

小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。例: 表示已知两个因数的积是0.75和其中一个因数0.5,求另一个因数是多少。或表示0.75是0.5的多少倍。

(二)小数乘除法的计算法则

1. 小数乘法法则:

(1)先按照整数乘法的法则计算;

(2)看因数中一共有几位小数,就从积的右边数出几位,点上小数点。

2. 小数除法法则:

(1)先按照整数除法的法则去除;

(2)商的小数点和被除数的小数点对齐;

(3)除到被除数的末尾仍有余数,就在余数后面添0再继续除。

二、 度量衡

长度单位换算

1千米=1000米 1米=10分米

1分米=10厘米 1米=100厘米

1厘米=10毫米

面积单位换算

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

重量单位换算

1吨=1000 千克

1千克=1000克

1千克=1公斤

人民币单位换算

1元=10角

1角=10分

1元=100分

时间单位换算

1世纪=100年 1年=12月

大月(31天)有:135781012月

小月(30天)的有:46911月

平年2月28天, 闰年2月29天

平年全年365天, 闰年全年366天

1日=24小时 1时=60分

1分=60秒 1时=3600秒

代数初步知识

一、用字母表示数

1 用字母表示数的意义和作用

2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式

(1)常见的数量关系

路程用s表示,速度v用表示,时间用t表示,三者之间的关系:

s=vt v=s/t t=s/v

总价用a表示,单价用b表示,数量用c表示,三者之间的关系:

a=bc b=a/c c=a/b

(2)运算定律和性质

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

减法的性质:a-(b+c) =a-b-c

(3)用字母表示几何形体的公式

长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。 c=2(a+b) s=ab

正方形的边长a用表示,周长用c表示,面积用s表示。 c=4a s=a2

平行四边形的底a用表示,高用h表示,面积用s表示。 s=ah

三角形的底用a表示,高用h表示,面积用s表示。

s=ah/2

梯形的上底用a表示,下底b用表示,高用h表示, s=(a+b)h/2

小学数学图形计算公式

1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a

2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

3 、长方形

C周长 S面积 a边长

周长=(长+宽)×2

C=2(a+b)

面积=长×宽

S=ab

4 、长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

(2)体积=长×宽×高

V=abh

5 三角形

s面积 a底 h高

面积=底×高÷2

s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高

6 平行四边形

s面积 a底 h高

面积=底×高

s=ah

7 梯形

s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圆形

S面积 C周长 ∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径

C=∏d=2∏r

(2)面积=半径×半径×∏

9 圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10 圆锥体

v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

11、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

12、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

13、圆的面积=圆周率×半径×半径

(二)分数和百分数的应用

1、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

2、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

3、分数除法应用题:

(1)求一个数是另一个数的几分之几(或百分之几)是多少。

特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。

解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。

甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式:(甲数减乙数)/乙数或(甲数减乙数)/甲数 。

(2)已知一个数的几分之几(或百分之几 )是多少 ,求这个数。

特征:已知一个实际数量和它相对应的分率,求单位“1”的量。

解题关键:根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。

4、百分率:

发芽率=发芽种子数/试验种子数×100%

小麦的出粉率= 面粉的重量/小麦的重量×100%

产品的合格率=合格的产品数/产品总数×100%

职工的出勤率=实际出勤人数/应出勤人数×100%

5、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

数量关系:工作总量=工作效率×工作时间

工作效率=工作总量÷工作时间

工作时间=工作总量÷工作效率

工作总量÷工作效率和=合作时间

数学六年级学习方法

首先:课前复习。就是上课前花两三分钟把书本本节课要学的内容看一遍。仅仅是看一遍,过一遍。这样上课老师讲自己不但可以跟上老师节奏还可以再次巩固。其余不要干其他多余的事。

其次:上课时候一定要专心听讲,如果觉得老师这里讲得都懂了的话可以自己翻书看后面的内容。做习题的时候一定要一道一道往过做,不要越题做。因为对于课本来说这些都是基础,只有基础完全掌握后才能做难题。上课过程中第一次接触到的知识点概念等,一定一定要当堂背过。不然以后很难背过,不要妄想考前抱佛教再背

另外要把笔记记准确,知道自己需要记什么不需要记什么,憋一个劲地往书上搬。字不要求整齐,自己能看懂就行。课本资料书上有例题,多看多记方法。先看课本基础,在看资料书上着重的。例题的方法一定一定要理解,不要去背!接着下课再看笔记,只是略微巩固记住。

数学六年级学习技巧

养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。

六年级上册数学知识点大全 篇5

一、比例

1、比例的基本性质是在比例里两内项积等于两外项积。

2、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

Y : x = k(一定)

3、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:

Xy=k(一定)

二、数与代数(复习)

1、自然数和0都是整数。

2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。

3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

6:倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

7、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

8、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

9、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

10、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

11、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

12、1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

13、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

14、几个数公有的因数,叫做这几个数的公因数。其中的一个,叫做这几个数的公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的公因数。

15、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

16、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。

17、如果两个数是互质数,它们的公因数就是1。

18、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。

19、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

20、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

(二)小数

1、小数的意义 :把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

2、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。

3、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

(三)分数

1、分数的意义 :把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

2、把单位“1”平均分成若干份,表示其中的一份的'数,叫做分数单位。

3、分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

5、分子分母是互质数的分数叫做最简分数。

6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四) 约分和通分

1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三、 性质和规律

1、商不变的规律 :商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

2、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

3、小数点位置的移动引起小数大小的变化

(1)小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……

(2)小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……

(3)小数点向左移或者向右移位数不够时,要用“0"补足位。

(五)分数的基本性质

分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

(六)分数与除法的关系

1. 被除数÷除数= 被除数/除数

2. 因为零不能作除数,所以分数的分母不能为零。

3. 被除数 相当于分子,除数相当于分母。

四、 运算的意义

(一)整数四则运算

加数+加数=和

一个加数=和-另一个加数

被减数-减数=差

被减数=减数+差

减数=被减数-差

一个因数× 一个因数 =积

一个因数=积÷另一个因数

被除数÷除数=商

除数=被除数÷商

被除数=商×除数

(二)运算定律

1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

3. 乘法交换律:

两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

5. 乘法分配律:

两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。

6. 减法的性质:

从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。

(三)运算法则

1. 整数加法计算法则:

相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

2. 整数减法计算法则:

相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

3. 整数乘法计算法则:

先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

4. 整数除法计算法则:

先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。

5. 小数乘法法则:

先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

6. 除数是整数的小数除法计算法则:

先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

7. 除数是小数的除法计算法则:

先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

8. 同分母分数加减法计算方法:

同分母分数相加减,只把分子相加减,分母不变。

9. 异分母分数加减法计算方法:

先通分,然后按照同分母分数加减法的的法则进行计算。

10. 带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

六年级上册数学知识点大全 篇6

一、确定物体位置的条件

在平面上确定物体的位置,首先要确定观测点,然后要找准方向和角度(方位角),最后要确定距离。

二、在平面图上标出物体位置的方法:

1、观测点和方位角;

2、从观测点沿着所确定的方向画一条射线;

3、根据单位长度的线段所表示的地面相对距离把实际距离换算为图上长度;

4、用直尺画出图上长度,并标出被观测点的位置及名称。

确定物体位置的条件:方向和距离,两个条件缺一不可。

三、位置关系的相对性。

描述两个物体或地点位置关系的时候会有两种方式,如“上海在北京的南偏东约30°的方向上”“北京在上海的`北偏西约30°的方向上”。角度不变,方向正好相反。南偏东对应北偏西(不能说成西偏北)

因为东西、南北正好相对,所以东偏南的相对位置是西偏北。

四、描述路线图的方法

先按行走路线确定观测点,再确定行走的方向和路程.即每走一步,都要说清从哪里出发,向什么方向走多远的距离。每走一步,都换一个新的观测点。

五、绘制路线图的方法

1、确定方向标和单位长度

2、确定起点的位置

3、根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为观测点)外,其余每段都要以前一段的终点为观测点。

4、以谁为观测点,就以谁为中心画出"十"字方向标,然后判断下一点的方向和距离。

每画一段路都要重新确定观测点、方向和距离。

六年级上册数学知识点大全 篇7

一、分数除法的意义和分数除以整数

知识点一:分数除法的意义

整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

知识点二:分数除以整数的计算方法

把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。

分数除以整数(0除外)的计算方法:

(1)用分子和整数相除的商做分子,分母不变。

(2)分数除以整数,等于分数乘这个整数的倒数。

二、一个数除以分数

知识点一:一个数除以分数的计算方法

一个数除以分数,等于这个数乘分数的倒数。

知识点二:分数除法的统一计算法则

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

知识点三:商与被除数的大小关系

一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。0除以任何数商都为0。

三、分数除法的混合运算

知识点一:分数除加、除减的运算顺序

除加、除减混合运算,如果没有括号,先算除法,后算加减。

知识点二:连除的计算方法

分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。

知识点三:不含括号的分数混合运算的运算顺序

在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。

知识点四:含有括号的分数混和运算的运算顺序

在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。

知识点五:整数的运算定律在分数混和运算中的运用

分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。被除数分子乘除数分母,被除数分母乘除数分子。

小学数学小数除法知识点

1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

小数除法的计算方法:

计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。

计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。

2、取近似数的方法:

取近似数的方法有三种,①四舍五入法②进一法③去尾法

一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的`时候选择应用。

取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。没有要求时,除不尽的一般保留两位小数。

3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。

4、循环小数的表示方法:

一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0。3636…… 1。587587……

另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。

5、有限小数:小数部分的位数是有限的小数,叫做有限小数。

6、无限小数:小数部分的位数是无限的小数,叫做无限小数。

小学数学单位间进率知识点

1公里=1千米1千米=1000米

1米=10分米1分米=10厘米1厘米=10毫米

1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

1吨=1000千克1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米1亩=666。666平方米

1升=1立方分米=1000毫升1毫升=1立方厘米

六年级上册数学知识点大全 篇8

1.约分方法:用分子和分母的公约数(1除外)去除分子和分母;通常除了得到最简单的分数。

2.一般分数方法:先找出几个分数分母的最小公倍数,然后将每个分数化为分母的最小公倍数。

3.小数的意义:将整数1平均分为10份、100份和1000份……十分之几,百分之几,千分之几……可以用小数表示。一个小数表示十分之几,两个小数表示百分之几,三个小数表示千分之几……

4.一个小数由整数部分、小数部分和小数点部分组成。数字中的圆点称为小数点,小数点左边的圆点称为整数部分,小数点左边的圆点称为整数部分,小数点右边的圆点称为小数点部分。在小数字中,每个相邻两个计数单位之间的进度为10。小数字最高分数单位十分之一与整数字最低分数单位一之间的进度也为10。

5.纯小数:整数为零小数,称为纯小数。例如:0.25 、 0.368都是纯小数。带小数:整数部分不是零小数,称为带小数。例如:3.25 、5.都是带小数的。

6.有限小数:小数部分的.数位为有限小数,称为有限小数。例如:41.7 、 25.3 、 0.都是有限小数。

7.无限小数:小数的数位是无限小数,称为无限小数。例如:4.33……3.1415926……

8.无限不循环小数:数字排列不规则,位数无限。这样的小数叫无限不循环小数。π。

9.循环小数:一个数字的小数部分依次重复一个数字或几个数字,称为循环小数。

10、0既不是正数,也不是负数。它是正数和负数之间的界限。0大于负数,小于正数。负数比较大小时,不考虑负数,但数字大的数字小。

11、“ 可以省略不写,-不能省略。

12.数轴元素:正方向(箭头表示)、原点(0刻度)、单位长度(刻度)。数轴上0左边的数字是负数,0右边的数字是正数。从左到右逐渐增大,最大负整数-1 最小正整数1。

13.表示两个相等的公式称为比例。例如:2:1=6:3。

14.在比例中,两个外项的积累等于两个内向的积累。这就是比例的基本性质。例如3:2=6:4可知3×4=2×6。

15、解比例 :根据比例的基本性质,如果已知比例中的任何三个项目,则可以在此比例中找到另一个未知项目。求比中的未知项称为解比。例如:3x = 四、内项乘内项,外项乘外项x =3×8,解得x=6。

16.成正比:两个相关的数量,一个数量变化,另一个数量也随之变化。如果两个数量之间的相应比值(即业务)确定,则称为成正比,其关系称为成正比。用字母表示y/x=k(一定) 例如,速度一定,距离与时间成正比;因为:距离÷时间=速度(一定)。

成反比例的量 :两个相关的数量,一个数量变化,另一个数量也随之变化。如果两个数量中相应的两个数量积累一定,这两个数量称为反比例数量,其关系称为反比例关系。用字母表示x×y=k(一定) 例如,由于速度:速度×时间=路程(一定)。

18、比例尺=图上距离:实际距离;实际距离=图上距离÷比例尺;图上距离=实际距离×比例尺。

本文网址:http://www.qgf7.com/q/30429.html